求y=log2^[(x+1)/(x-1)]的反函数
热心网友
y=log[(x+1)/(x-1)] 底数2 ?.---2^y=(x+1)/x-1)---x*2^y-2^y=x+1---x(2^y-1)=2^y+1---x=(2^y+1)/(2^y-1)交换x,y得到反函数y=(2^x+1)/(2^x-1) (x0)
热心网友
y=log2[(x+1)/(x-1)]2^y=(x+1)/(x-1)=[(x-1)+2]/(x-1)=1+2/(x-1)2/(x-1)=2^y-1x-1=2/(2^y-1)x=1+2/(2^y-1)=(2^y-1+2)/(2^y-1)=(2^y+1)/(2^y-1)交换x、y∴y=log2[(x+1)/(x-1)]的反函数是:y=(2^x+1)/(2^x-1)
热心网友
反函数里是以原来的Y作为变量的,对数的反函数是与它同底的指数函数。应变为:[(x+1)/(x-1)]=2的y次方,然后再将等号左边进行变动。为: x+1=(x-1)乘以2的y次方, x-x乘以2的y次方=-1-2的y次方, x(1-2的y次方)=-1-2的y次方 x=-1-2的y次方/1-2的y次方 习惯上变量写为x,值为y,所以最后 y=-1-2的x次方/1-2的x次方.