第一题:若复数z满足(1+i)z+(1-i)z共轭复数=2,则z模的最小值=第二题:无穷等比数列{a*n}中,公比为q(q不等于-1),已知a*1+a*2=3(a*3+a*4),a*5=1,则lim(a*1+a*3+...+a*(2n-1))=

热心网友

z=x+yi---z~=x-yi(1+i)z+(1-i)z~=2---(1+i)(x+yi)+(1-i)(x-yi)=2---(x-y)+i(x+y)+(x-y)-i(x+y)=2---x-y=1---y=x-1---|z|^2=x^2+y^2=x^2+(x-1)^2=2x^2-2x+1=2(x-1/2)^2+1/2所以x=1/2,y=-1/2---z=(1-i)/2时,|z|min=1/√2。2)等比数列{an}中,公比q-1。a1+a2==3(a3+a4)---a1+a1q=3(a1q^2+a1q^3)---a1(1+q)=3a1*q^2(1+q)q0,-1,a10---q^2=1/3a5=1---a1q^4=1 & q^2=1/3----a1=1/q^4=9。n--+,lim(a1+a3+a5+。。。。。。)=a1/(1-q^2)=9/(1-1/3)=27/2。

热心网友

1. z=a+bi === (1+i)z+(1-i)z共轭复数 = (1+i)(a+bi)+(1-i)(a-bi)= [(a-b)+(a+b)i] +[(a-b)-(a+b)i] = 2(a-b) = 2== a-b = 1z模 = 根号(a^2+b^2) = 根号[2*(b -1/2)^2 +1/2] = 根号[1/2]== z模的最小值 = (根号2)/22. a*1+a*2=3(a*3+a*4) === a +aq = 3*(a*q^2 + a*q^3) == q^2 = 1/3a*5=1 === a*q^4 = 1 == a = 9因此,lim(a*1+a*3+...+a*(2n-1)) = a/(1 - q^2) = 9/(1 -1/3) = 27/2

热心网友

a_1(1+q)=3a_3(1+q)所以a_1=3a_1q^2得q^2=1/3又由于a_5=1=a_1q^4=a_11/9得到a_1=9a_1+a_3+a_5+...+a_(2n-1)=(9(1-(1/3)^n))/(1-(1/3))=...