已知f(A,B)=sin^2 2A+cos^2 2B-√3sin2A-cos2B+2(1)设A,B,C是△ABC的内角,求f(A,B)取得最小值时角C的值.(2)当A+B=π/2,且A,B∈R时,y=f(A,B)的图象按向量P平移后得到函数y=2cos2A的图象,求满足上述条件的一个向量P.

热心网友

(1) f(A,B)=sin^2 2A+cos^2 2B-√3sin2A-cos2B+2=(sin2A-√3/2)^2+(cos2B-1/2)^2+2-3/4-1/4=(sin2A-√3/2)^2+(cos2B-1/2)^2+1f(A,B)min=1sin2A=√3/2 A=60(度) 或 A=30(度)cos2B=1/2 B=30(度)所以 C1=180-60-30=90(度) C2=180-30-30=120(度)

热心网友

(1) f(A,B)=sin^2 2A+cos^2 2B-√3sin2A-cos2B+2 =(sin2A-√3/2)^2+(cos2B-1/2)^2+2-3/4-1/4 =(sin2A-√3/2)^2+(cos2B-1/2)^2+1 f(A,B)min=1 sin2A=√3/2 A=60(度) 或 A=30(度) cos2B=1/2 B=15(度) 所以 C1=180-60-15=105(度) C2=180-30-15=135(度)

热心网友

有点难,毕业这么多年,不静下心来,真不知怎么动笔了.