已知等比数列{an},a1>0,公比q>-1,且不等于0。bn=a(n+1)+a(n+2),n属于正整数。{an},{bn}的前n项和分别为An,Bn,试比较An,Bn的大小
热心网友
解:1)q=1时,An=na1,Bn=2na1,∵a10∴An<Bn2)q≠1时,An=[a1-a(n+1)]/(1-q)∵bn=a(n+1)+a(n+2),b1=a2+a3,∴Bn=[a2-a(n+2)]/(1-q)+[a3-a(n+3)]/(1-q)∴(1-q)(An-Bn)=(a1-a2-a3)-{a(n+1)-a(n+2)-a(n-3)]=(a1-a2-a3)-(a1-a2-a3)q^n=a1(1-q-q^)(1-q^n)∴An-Bn=a1(1-q-q^)[(1-q^n)/(1-q)]下面证明:[(1-q^n)/(1-q)]>0当-1<q<1时:1-q>0且1-q^n>0∴[(1-q^n)/(1-q)]>0当q>1时:1-q<0且1-q^n<0∴[(1-q^n)/(1-q)]>0由于[(1-q^n)/(1-q)]>0且a1>0∴An-Bn=a1(1-q-q^)[(1-q^n)/(1-q)]关键是看(1-q-q^)与0的大小令1-q-q^=0,q=(-1+√5)/2或q=(-1-√5)/2q=(-1-√5)/2<-1不符合题意舍去,∴当-1<q<(-1+√5)/2时:An>Bn。当q=(-1+√5)/2时:An=Bn。当q>(-1+√5)/2时:An<Bn。综合1),2)可得:当-1<q<(-1+√5)/2时:An>Bn,当q=(-1+√5)/2时:An=Bn,当q>(-1+√5)/2时:An<Bn。