第一题:若复数z满足(1+i)z+(1-i)z共轭复数=2,则z模的最小值=第二题:无穷等比数列{a*n}中,公比为q(q不等于-1),已知a*1+a*2=3(a*3+a*4),a*5=1,则lim(a*1+a*3+...+a*(2n-1))=
热心网友
1. z=a+bi === (1+i)z+(1-i)*z共轭复数= (1+i)(a+bi)+(1-i)(a-bi)= [(a-b)+(a+b)i] +[(a-b)-(a+b)i] = 2(a-b) = 2== a-b = 1z模 = 根号(a^2+b^2) = 根号[2*(b -1/2)^2 +1/2] = 根号[1/2]== z模的最小值 = (根号2)/22. a1+a2=3*(a3+a4) === a +aq = 3*(a*q^2 + a*q^3) == q^2 = 1/3a5 = 1 === a*q^4 = 1 == a = 9因此,lim[a1+a3+...+a(2n-1)] = a/(1 - q^2) = 9/(1 -1/3) = 27/2