已知数列{an}的首项a1=3,通项an与前n项和Sn之间满足2a=SnSn-1(n>=2) (1). 求证: (1/Sn)是等差数列,并求公差; (2). 求数列 {an}的通项公式

热心网友

已知数列{an}的首项a1=3,通项an与前n项和Sn之间满足2a=SnSn-1(n=2)(1)。 求证: (1/Sn)是等差数列,并求公差;(2)。 求数列 {an}的通项公式2an=SnSn-1(n=2)1/2an=1/SnSn-1=(n=2)-1/2=-an/SnSn-1=1/Sn-1/Sn-11/Sn-1/Sn-1=-1/2(1/Sn)是等差数列,并公差-1/2;1/Sn=1/Sn-1-1/2 =-1/2*(n-1)+1/S1 =-1/2*(n-1)+1/a1 =-1/2*(n-1)+1/31/Sn-1=-1/2*(n-2)+1/31/2an=1/SnSn-1=1/Sn*1/Sn-1=[-1/2*(n-1)+1/3]*[-1/2*(n-2)+1/3]an=1/{2[-1/2*(n-1)+1/3]*[-1/2*(n-2)+1/3]}。

热心网友

解:(1)你的那个条件应该是2An=SnSn-1吧! 就令An=a吧! SnSn-1=2a Sn-1Sn-2=2a SnSn-1-Sn-1Sn-2=0 Sn-1(Sn-Sn-2)=0 Sn-Sn-2=0 Sn=Sn-2