已知椭圆方程为mx^2+ny^2=1(m>0,n>0),直线x-y+1=0与该椭圆相交于P和Q,且op⊥oQ(其中O为坐标原点), |PQ|=√10/2,求椭圆方程。

热心网友

P(x1,y1), Q(x2,y2) == P(x1,1+x1), Q(x2,1+x2)OP⊥OQ == (y1/x1)*(y2/x2)=-1 == x1*x2 + y1*y2=0 == 2*x1*x2+(x1+x2)+1=0 ...(1)|PQ|=√10/2 == |PQ|^2 = 10/4 = (x1-x2)^2+(y1-y2)^2 = 2*(x1-x2)^2= 2*[(x1+x2)^2 -4*x1*x2] ...(2)x-y+1=0代入mx^2+ny^2=1,整理得:(m+n)x^2 +2nx+(n-1)=0 == x1+x1 = -2n/(m+n), x1*x2 = (n-1)/(m+n)代入(1)(2),解得: m,n = 3/2,1/2椭圆方程: 3*x^2 +y^2 = 2 or: x^2 +3*y^2 = 2