已知A,B,C同时满足sinA+sinB+sinC=0, cosA+cosB+cosC=0求证;cos^A+cos^B+cos^C为定值过程详细一点
热心网友
设0≤A≤B≤C≤2π1)(sinA+sinB)^2+(cosA+cosB)^2=sinC^2+cosC^2得cos(A-B)=-1/2,则B-A=2π/3,或4π/3,同理,cos(C-B)=-1/2,则C-B=2π/3,或4π/3所以A=B-2π/3,C=B+2π/3。2)cos^A+cos^B+cos^C==(-1/2cosB+根号3/2sinB)^2+cos^B+(-1/2cosB-根号3/2sinB)^2==3/2(cos^B+sinB^2)=3/2
热心网友
解 cosA+cosB+cosC=0 (cosA+cosB+cosC)^2=cos^A+cos^B+cos^C+2cosAcosC+2cosBcosA+2cosBcosC=cos^A+cos^B+cos^C+2cosB(cosA+cosC)+2cosAcosC =2cosAcosC+cos^A+cos^B+cos^C+2cosB(-cosB) =2cosAcosC+cos^A+cos^C-cos^B =(cosA+cosC)^2-cos^B =(-cosB)^2-cos^B =0