若向量a=(2,1)围绕原点逆时针旋转π/4,得到向量b,则b的坐标是多少?
热心网友
设向量a=(2,1)的倾角为α,向量b的倾角为β则sinα=y/r=1/√5 cosα=x/r=2/√5 sinβ=sin(α+π/4)=sinαcos(π/4)+cosαsin(π/4) =(1/√5)*(√2/2)+(2/√5)*(√2/2) =(3√2)/(2√5) cosβ=cos(α+π/4)=cosαcos(π/4)-sinαsin(π/4) =(2/√5)*(√2/2)-(1/√5)*(√2/2) =√2/(2√5) r=√5向量b的横坐标为 cosβ*r=√2/(2√5)*√5=√2/2 纵坐标为 sinβ*r=(3√2)/(2√5)*√5=3√2/2 向量b=(√2/2,3√2/2)
热心网友
解:设a=(OA→)=2+i,b=(OB→),由题意结合复数的几何意义得(OB→) =(OA→) (cosπ/4+isinπ/4)=(2+i)(√2/2)+ [(√2/2)i]= (√2/2)+ [(3√2/2)i], 即b= (√2/2, 3√2/2)