设正数a1,a2,a3,……,an成等差数列,求证:1/(√a1 + √a2)+ 1/(√a2+√a3) + 1/(√a3+√a4) + …… + 1/(√an+√an+1)=n/(√a1+√an+1)已知﹛an﹜是等差数列,求证:1/(a1* a2)+1/(a2* a3)+1/(a3* a4)+ …… +1/(an-1* an)=(n-1)/ (a1* an)a后面的字母(1,2,n,n-1等)均为下标请告诉我解题方法,谢谢!

热心网友

设正数a1,a2,a3,……,an成等差数列,求证:1/(√a1 + √a2)+ 1/(√a2+√a3) + 1/(√a3+√a4) + …… + 1/(√an+√an+1)=n/(√a1+√an+1)已知﹛an﹜是等差数列,求证:1/(a1* a2)+1/(a2* a3)+1/(a3* a4)+ …… +1/(an-1* an)=(n-1)/ (a1* an)证:因为正数a1,a2,a3,……,an成等差数列令其公差为d所以a(n+1)=a(n)+d1/(√an+√an+1)=[√an-√a(n+1)]/[(an-a(n+1)]=[√a(n+1)-√an]/d所以1/(√a1+√a2)+1/(√a2+√a3)+1/(√a3+√a4)+…… +1/(√an+√an+1)=(1/d)*[(√a2-√a1)+ (√a3-√a2) + (√a4-√a3) + …… + (√an+1-√an)=(1/d)*(√an+1-√a1)=(√an+1-√a1)/d=[a(n+1)-a1]/{d*[√a(n+1)+√a1]}=n/(√a1+√an+1)证:已知﹛an﹜是等差数列,令其公差为d1/(an-1* an)=(1/d)*[(1/an-1)-(1/an)]所以1/(a1*a2)+1/(a2* a3)+1/(a3* a4)+ …… +1/(an-1* an)=(1/d)*[(1/a1-1/a2)+(1/a2-1/a3)+(1/a3-1/ a4)+ …… +1/(an-1)-1/an]=(1/d)*(1/a1-1/an)=(n-1)/(a1* an)。

热心网友

你到 看看就知道了!