已知:X+2Y=12(X>0,Y>0).求证:log(2)X+log(4)Y≤7/2.

热心网友

x+2y=(x/2)+(x/2)+2y≥3[(三次根号下)(x/2)*(x/2)*2y]           =3[(三次根号下)(x^2)y/2]所以 3[(三次根号下)(x^2)y/2]≤12(三次根号下)[(x^2)y/2]≤4即 (x^2)y≤128log(2)x+log(4)y=log(4)(x^2)+log(4)y=log(4)[(x^2)y]≤log(4)128=[log(2)128]/[log(2)4]=7/2