热心网友
绝对值X小于等于45度,F(X)= (COSX)^2 + SINX的最小值F(X)= (COSX)^2 + SINX== 1 + sinx -(sinx)^2== -(sinx - 1/2 )^2 + 5/4因为 -π/4 ≤x ≤π/4所以 -√2/2 ≤sinx ≤√2/2所以 -(3-2√2)/4≤ -(sinx - 1/2 )^2 ≤ 0即 (√2+1)/2≤F(X)≤5/4所以 F(X)min = (√2+1)/2
绝对值X小于等于45度,F(X)= (COSX)^2 + SINX的最小值F(X)= (COSX)^2 + SINX== 1 + sinx -(sinx)^2== -(sinx - 1/2 )^2 + 5/4因为 -π/4 ≤x ≤π/4所以 -√2/2 ≤sinx ≤√2/2所以 -(3-2√2)/4≤ -(sinx - 1/2 )^2 ≤ 0即 (√2+1)/2≤F(X)≤5/4所以 F(X)min = (√2+1)/2