双曲线x^2\a^2 -y^2\b^2 =1,的右顶点为A,x轴上有一点Q(2a,0),若双曲线上存在一点P,使AP垂直于PQ,求此双曲线离心率的取值范围.
热心网友
P(x,y),A(a,0),Q(2a,0)AP垂直于PQ 则 y/(x-a)*y/(x-2a)=-1 y^2=-(x^2-3ax+2a^2) 代入x^2\a^2 -y^2\b^2 =1, b^2=c^2-a^2 整理得:c^2x^2-3a^3x+(3a^4-a^2c^2)=0 DEL=0 整理后得: 5c^4-12a^2c^2+9a^4=0 (5c^2+a^2)(c^2-3a^2)=0所以 c^2=3a^2 c/a=√3/3