设a,b,c属于R,求证a^4+b^4+c^4>=abc(a+b+c)

热心网友

求证:a^4+b^4+c^4≥abc(a+b+c) 证明: abc(a+b+c)=a^2bc+b^2ac+c^2ab ≤a^2[(b^2+c^2)/2]+b^2[(a^2+c^2)/2]+c^2[(a^2+b^2)/2]=a^2b^2+b^2c^2+c^2a^2≤(a^4+b^4)/2+(b^4+c^4)/2+(c^4+a^4)/2 =a^4+b^4+c^4 命题得证