P(√2,1)在双曲线(x^2/a^2)-(y^2/b^2)上,且P与F(c,0)的距离为1,(1)求双曲线方程.(2)过F的直线L交双曲线于A、B,若|AB|≤4,求L的倾角的范围。请求详解,拜托了。
热心网友
解:(1)求双曲线方程|pc|=√{(√2-c)^2+1}=1c^2=2a^2+b^2=2 (1)(2/a^2)-(1/b^2)=1 (2)(1)代(2)得:(a^2-1)(a^2-4)=0a^2=4 (增根舍去)a^2=1b^2=1双曲线方程为:x^2-y^2=1(2)过F的直线L交双曲线于A、B,若|AB|≤4,求L的倾角的范围设过F的直线L方程为y=k(x-√2) (1)x^2-y^2=1 (2)(1)代入(2)x^2-{k(x-√2)}^2=1(1-k^2)x^2+(2√2)xk^2-2k^2-1=0x1+x2=-[(2√2)k^2]/(1-k^2) (3)x1*x2=-(2k^2-1)/(1-k^2) (4)(3)^2-4*(4)(x1-x2)^2=4(1+k^2)/(1-k^2)^2同理: (y1-y2)^2=4(k^2)(1+k^2)/(1-k^2)^2(x1-x2)^2+(y1-y2)^2=4(1+k^2)^2/(1-k^2)^2|2(1+k^2)/(1-k^2)|≤4-2≤[(1+k^2)/(1-k^2)]≤2 -1/3≤k≤1/3 k≤-3 3≤xL的斜率的范围(-00 -3)U(-1/3,1/3)U(3,+00)。